Tag Archives: screw gas compressor

China OEM High Pressure Oxygen Helium Hydrogen Gas Air Screw Diaphragm Compressor air compressor CHINAMFG freight

Product Description

V type diaphragm compressor for high purity gases

 

type inlet pressure
MPa(G)
outlet pressure
MPa(G)
flow rate
Nm3/h
power
kW
rotate speedr/min
1G3V-40/13-I normal pressure 1.3 40 15 330
2G3V-40/13-150 1.3 15 40 15 400
H-GV3-950/69-80 6.9 8.0 950 18.5 400
H-GV3-60/2-74 0.2 7.4 60 22 400
GV3-100/17-250 1.7 25 100 30 400
GV3-200/140-300 14 30 200 30 400
G2.5V-10/200 normal pressure 20 10 7.5 400
G2.5V-10/1-160 0.1 16 10 11 400
G2.5V-20/4-350 0.4 35 20 11 400
G2.5V-20/4-160 0.4 16 20 11 400
G2.5V-20/4-250 0.4 25 20 11 400
CG2V-5/200 normal pressure 20 5.0 3.0 400
G2V-10/13 normal pressure 1.3 10 3.0 400
G2V-5/4-350 0.4 35 5.0 3.0 400
G2V-8/2.5-160 0.25 16 8.0 5.5 400
G2V-5/4-160 0.4 16 5.0 5.5 400

1  Equipment specifications and requirements
1.1 Location and site conditions:
(1)      installation location: Indoor
(2)    :  dIIBT4,
Explosion protection requirements: Motor dIIBT4, 
1.2:  Common engineering criteria
(1)     Cooling water
 Pressure                       3~5 Bar (G)
Water inlet temperature        ≤ 30ºC
 (2) Electric                         3P/380  VAC/ 50HZ, 
1.3 Drive method: Electric motor , Belt drive
1.4  Processing technology and parameter requirements
(1)Suction pressure:            7 bar  (G)
(2) Discharge pressure:          160bar (G) 
(3) Suction Capacity:            50Nm3/h
(4)  Media:                 CH4 C2H4
(5) Suction temperature:         ≤30 ºC
(6) Temperature of water inlet:    ≤30 ºC

2 Technical Parameters

2.1  Main Technical Specifications
(1) Model:                       GL2-50/7-160
(2) Type                       
L-type, water-cooling,two-stage Compression
(3) Drive method      Crank shaft and connecting rod
(4)  Media    :             CH4  C2H4
(5)Suction Capacity:            50Nm3/h
(6) Suction pressure:            7 bar  (G)
(7) Discharge pressure:           160bar(G)
(8) Suction temperature:           ≤30 ºC
(9)Discharge temperature:         ≤45 ºC
(10)Lube oil temperature:        ≤70 ºC
(11) Crank shaft speed:        420r/min
(12) Piston stroke:             105 mm
(13) Shaft power:                ≤9.5.kW
(14) Water-inlet temperature:       ≤30 ºC
(15) Cooling water consumption    1200L/h
(16)Lube oil trademark:        L-HM -68
                                      L-HM-68# Chemical-Resistant Lube oil
(18) :Amount of the first oil:       25Kg
(19) Transmission method:          strap transmission
2.2  Electromotor
(1)Model:                         YB3-160L-4 
(2) Power:                       15kW
(3) Electromotor speed:             1460r/min
(4) Supply voltage                 380V/50Hz
(5) Defend exploding grade:     dIIBT4
(6) Defend and insulation request:  IP55/F
2.2.1 Electromotor
(1)Model:                         YB3-80L-4 
(2) Power:                       0.75kW
(3) Electromotor speed:            1400r/min
(4) Supply voltage                 380V/50Hz
2.3 Compressor skid
(1) Dimensions:     1700×850×1150mm
(2) Weight:                          1100 kg

3  Technical requirements
3.1 Materials in contact with the medium and compression
(1) Gas cover:                       3Cr13
(2) Diaphragms:                 /00Cr15Ni5.
(3) Suction valve and Discharge valve:  
  Hoerbiger / Cozzani,baohua
(4) 304 stainless steel
Pipeline, Joint, Flange, Cooler, etc.,  304stainless steel 
3.2 Important accessory material
(1) Diaphragm head:                  45
(2) Perforated plate:                45
(3) Piston pole:                    40Cr
(4) Crankcase:                      HT200
(5) Cross-head:                     QT600-3
(6) Oil-pipeline                     304  stainless steel
(7) Strap                      Anti static triangle belt
3.3   The request to Equipment
(1) Compressor,electromotor,assistant equipment,gauge and pipeline install on the underpan ;
(2) Supply Specialties tools,spare parts and document 1 set.
(3) PID;Affording the control principle drawing.
3.4  All of the compressor control
(1)Auto alarm for 1st stage diaphragm rupture
Auto alarm for 1st stage diaphragm rupture,the pressure is higher than 0.25MPa, compressor alarm shutdown, 
(2) Auto alarm for 1st stage diaphragm rupture
Auto alarm for 2st stage diaphragm rupture,the pressure is higher than 0.25Mpa, compressor alarm shutdown, 

4 High exhaust pressure protection
16.5 MPa,
Exhaust pressure is higher than 16.5mpa, compressor alarm
 

After-sales Service: 10024-97-2
Warranty: 1year
Principle: Diaphragm Compressor
Application: High Back Pressure Type
Performance: Low Noise
Mute: Not Mute
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China OEM High Pressure Oxygen Helium Hydrogen Gas Air Screw Diaphragm Compressor   air compressor CHINAMFG freightChina OEM High Pressure Oxygen Helium Hydrogen Gas Air Screw Diaphragm Compressor   air compressor CHINAMFG freight
editor by CX 2023-12-11