Tag Archives: booster compressor

China OEM Gv-20/4 Energy-Saving Explosion-Proof Compressor Argon Helium Air Diaphragm Compressor Booster portable air compressor

Product Description

Reciprotating Completely Oil-Free Diaphragm/Piston Compressor
( Blue Font To View Hyperlink)

Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media type
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)

GV Model Simple Description
GV diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
Advantages
No leakage: the compressor membrane head is sealed by static “O” ring. The O “ring is made of elastic material, with long service life and no dynamic seal to ensure no leakage during gas compression.
Corrosion resistance: the compressor membrane head can be made of 316L stainless steel, the diaphragm is made of 301 stainless steel.
Small tightening torque: “O” ring seal, can reduce flange bolt tightening torque, reduce shutdown maintenance time.

GV Model Specification

Number Model Cooling water consumption(t/h) Exhaust volume
Nm3/h)
Intake pressure
(MPa)
Exhaust pressure
(MPa)
Overall dimension
LxWxH(mm)
Weight
(t)
Motor power
(KW)
The piston stroke of the following products is 70mm
1 GV-8/8-160 0.5 8 0.8 16 1310x686x980 0.65 3
2 GV-10/6-160 0.8 10 0.6~0.7 16 1200x600x1100 0.5 4
3 GV-10/8-160 0.8 10 0.8 16 1330x740x 1080 0.65 4
4 GV-10/4-160 0.8 10 0.4 16 1330x740x1000 0.65 4
5 GV-7/8-350 0.8 7 0.8 16 1300x610x920 0.8 4
6 GV-15/5-160 0.8 15 0.5 16 1330x740x920 0.7 5.5
7 GV-5/7-350 1 5 0.7 35 1400x845x1100 0.8 5.5
The piston stroke of the following products is 95mm
8 GV-5/200 0.4 5 Normal pressure 20 1500x780x1080 0.75 3
9 GV-5/1-200 0.3 5 0.1 20 1520 x 800 x 1050 0.75 3
10 GV-11/1-25 0.6 11 0.1 2.5 1500x780x1080 0.85 4
11 GV-12/2-150 1 12 0.2 15 1600x776x1080 0.75 5.5
12 GV-20/W-160 0.8 20 1 16 1500x800x 1200 0.8 5.5
13 GV-30/5-30 0.8 30 0.5 1 1588x 768 x 1185 0.98 5.5
14 GV-10/1-40 0.4 10 0.1 4 1475 x 580×1000 1 5.5
15 GV-20/4 0.6 20 Normal pressure 0.4 1500x900x1100 1 5.5
16 GV-70/5-10 1-5 70 0.5 1 1595 x 795 x 1220 1 5.5
17 GV-8/5-210 0.4 8 0.5 21 1600 x 880×1160 1.02 5.5
18 GV-20/1-25 0.4 20 0.1 2.5 1450 x 840×1120 1.05 5.5
19 GV-20/10 – 350 1.2 20 1 35 1500x750x1140 0.8 7.5
20 GV-15/5-350 1-05 15 0.5 35 1600 x 835x 1200 1 7.5
21 GV-20/8-250 1.2 20 0.8 25 1520x825x1126 1 7.5
22 GV-12/5-320 1.2 12 0.5 32 1600 x 835x 1130 1 7.5
23 GV-15/8-350 1.1 15 0.8 35 1520x820x1160 1.02 7.5
24 GV-18/10-350 1.2 18 1 35 1255 x 800 x 1480 1.2 7.5
25 GV-35/4-25 0.3 35 0.4 2.5 1500x810x1100 1 7.5
26 GV-50/6.5-36 2.25 50 0.65 3.6 1450x850x1120 1.048 7.5
27 GV-20/5-200 1-2 20 0.5 20 1500x780x1080 0.8 7.5
The piston stroke of the following products is 130mm
28 GV-20/3-200 1.2 20 0.3 20 2030 x 1125 x 1430 1.8 15
29 GV-25/5 -160 1.2 25 0.5 16 1930 x 1150 x 1450 1.8 15
30 GV-40/0.5-10 1.2 40 0.05 1.00 2035 x 1070 x 1730 1.8 15
31 GV-20/200 1.2 20 Normal pressure 20 1850 x 1160 x 1400 1.85 15
32 GV-90/30-200 1.2 90 3 20 2030 x 970 x 1700 1-8 22
33 GV-30/8-350 2.4 30 0.8 35 2030 x 1125 x 1430 1.8 22
34 GV-30/8-350 2.4 30 0.8 35 2040 x 1125 x 1430 1.8 22
35 GV-60/10-160 3 60 1 16 1800 x 1100 x 1400 1.8 22
36 GV-60/5-160 3 60 0.5 16 2030 x 1125 x 1430 1.8 22
37 GV-40/10-400 2 40 1 40 2000 x 1150 x 1500 1.8 22
38 GV-60/10-350 2.4 60 1 35 2070 x 1125 x 1430 1.8 22
39 GV-30/5-350 2 30 0.5 35 1900 x 1130 x 1450 2 22
40 GV-40/2.5-160 2 40 0.25 16 1900 x 1130 x 1450 2 22
41 GV-150/3.5-30 2 150 0.35 3 1900 x 1130 x 1450 2 22
42 GV-70/2.5-80 2 70 0.25 8 1880 x 1060 x 1400 2.12 22
43 GV-80/2.5-80 2 80 0.25 8 1880 x 1060 x 1400 2.12 22
44 GV-120/3.5-12 3.6 120 0.35 1.2 2030 x 1045 x 1700 2.2 22
45 GV-100/7-25 1.2 100 0.7 2.5 2030 x 1045 x 1700 1.9 30
46 GV-50/5-210 2 50 0.5 21 1900 x 1130 x 1450 2 30
47 GV-80/5-200 2 80 0.5 20 1900 x 1130 x 1450 2 22
48 GV-40/5-350 2 40 0.5 35 1900 x 1130 x 1450 2 30

Principle: Reciprocating Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Lubrication Style: Oil-free
Drive Mode: Electric
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China OEM Gv-20/4 Energy-Saving Explosion-Proof Compressor Argon Helium Air Diaphragm Compressor Booster   portable air compressorChina OEM Gv-20/4 Energy-Saving Explosion-Proof Compressor Argon Helium Air Diaphragm Compressor Booster   portable air compressor
editor by CX 2023-12-11

China Standard Hot Sales High Safety 330bar Breathing Filling Air Booster Compressor supplier

Product Description

Model Specification
HC-X100/EM/ET/SH Working pressure: 30Mpa(300bar)
Flow: 100L/min
Type: X-shape, 4-stages,4-cylinders
Driver: 220V/50Hz/2.2 kW or 380V/50Hz/3kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: manual stop, automatic stop
Filtration: 1 air filtering, 1 liquid-water separating, 1 air purifying
Safety: outlet safe valve, safety guard
Size(L/W/H)=600/360/430 mm
Weight: 45 KG
MCH6/EM/ET/SH Working pressure: 30Mpa(300bar)
Flow: 80-100L/min
Type: X-shape, 4-stages,4-cylinders
Driver: 220V/50Hz/2.2 kW or 380V/50Hz/3kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: manual stop, automatic stop
Filtration: 1 air filtering, 1 liquid-water separating, 1 air purifying
Safety: outlet safe valve, safety guard
Size(L/W/H)=350/650/390 mm
Weight: 39 KG
HBBC-100/EM/ET
 
Working pressure: 30Mpa(300bar)
Flow: 100L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 220V/50Hz/2.2 kW or 380V/50Hz/3kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: manual stop
Filtration: 1 air filtering, 1 liquid-water separating, 1 air purifying
Safety: inter-stage safe valve, safety guard
Size(L/W/H)=700/380/520 mm
Weight: 46 KG
 
HC-W200/ET/SH Working pressure: 30Mpa(300bar)
Flow: 200L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 380V/50Hz/5.5kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: automatic stop
Filtration: 1 air filtering, 2 liquid-water separating, 2 air purifying
Safety: inter-stage safe valve,pressure holding valve, safety guard
Size(L/W/H)=1200/700/920 mm
Weight: 190 KG
HC-W265/ET Working pressure: 30Mpa(300bar)
Flow: 265L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 380V/50Hz/5.5kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: automatic stop
Filtration: 1 air filtering, 2 liquid-water separating, 1 air purifying
Safety: inter-stage safe valve,pressure holding valve, safety guard
Size(L/W/H)=1200/700/920 mm
Weight: 160 KG
HC-W300/ET/SH
 
Working pressure: 30Mpa(300bar)
Flow: 300L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 380V/50Hz/7.5kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: automatic stop
Filtration: 1 air filtering, 2 liquid-water separating, 2 air purifying
Safety: inter-stage safe valve,pressure holding valve, safety guard
Size(L/W/H)=1200/700/920 mm
Weight: 210 KG
HC-W400/ET/SH Working pressure: 30Mpa(300bar)
Flow: 400L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 380V/50Hz/7.5kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: automatic stop
Filtration: 1 air filtering, 2 liquid-water separating, 2 air purifying
Safety: inter-stage safe valve,pressure holding valve, safety guard
Size(L/W/H)=1200/700/920 mm
Weight: 220 KG
HC-W400Z( microcomputer) Working pressure: 30Mpa(300bar)
Flow: 400L/min
Type: W-shape, 3-stages,3-cylinders
Driver: 380V/50Hz/7.5kW or gasoline engine
Lubrication: Splash
Cooling: air
Control: Automatic start and stop, automatic drain, temperature control system, phase sequence protection function, lack of oil protection, emergency stop, low noise, low temperature, low speed, microcomputer display screen
Filtration: 1 air filtering, 2 liquid-water separating, 2 air purifying
Safety: inter-stage safe valve,pressure holding valve
Size(L/W/H)=1200/700/920 mm
Weight: 290 KG
HC-X680Z (PLC) Working pressure: 33Mpa(330bar)
Flow: 650L/min
Type: X-shape, 4-stages,4-cylinders
Driver: 380V/50Hz/15kW or gasoline engine
Lubrication: pressure lubricating
Cooling: air
Control: PLC system with automatic stop, automatic drain, temperature control system, phase sequence protection function, emergency stop function, low noise, low temperature, low speed, oil filtration, touch screen
Filtration: 1 air filtering, 3 liquid-water separating, 1 air purifying
Safety: all-stage safe valve
Size(L/W/H)=980/1450/1750 mm
Weight: 680 KG
 
HC-X720Z (PLC)

 

Working pressure: 33Mpa(330bar)
Flow: 720L/min
Type: X-shape, 4-stages,4-cylinders
Driver: 380V/50Hz/15kW or gasoline engine
Lubrication: pressure lubricating
Cooling: air
Control: PLC system with automatic stop, automatic drain, temperature control system, phase sequence protection function, emergency stop function, low noise, low temperature, low speed, oil filtration, touch screen
Filtration: 1 air filtering, 3 liquid-water separating, 1 air purifying
Safety: all-stage safe valve
Size(L/W/H)=980/1450/1850 mm
Weight: 690 KG
HC-X810Z (PLC) Working pressure: 33Mpa(330bar)
Flow: 810L/min
Type: X-shape, 4-stages,4-cylinders
Driver: 380V/50Hz/18.5kW or gasoline engine
Lubrication: pressure lubricating
Cooling: air
Control: PLC system with automatic stop, automatic drain, temperature control system, phase sequence protection function, emergency stop function, low noise, low temperature, low speed, oil filtration, touch screen
Filtration: 1 air filtering, 3 liquid-water separating, 1 air purifying
Safety: all-stage safe valve
Size(L/W/H)=980/1450/1850 mm
Weight: 700 KG

The final piston adopts a special process, and the piston ring adopts the Japanese Riken process. Unanimous praise from users. This product adopts three-cylinder three-stage compression, splash lubrication, inter-stage safety valve and filter system. HC-W400 can provide safe compressed air for any industry that requires high-pressure pure air source, and provide safe compressed air that meets the requirements of human breathing. This product is designed, produced and tested and accepted in accordance with the requirements of GB/T 12929-2008 “Marine High Pressure Piston Air Compressor”; the air quality complies with EN12571 international breathing compressor breathing standard;After the air flows through the separator and filter in the unit, it is removed from the The oil and impurities in the high-pressure air can filter the inhaled air containing fine particulate matter (PM2.5) to a safety value of less than 10 micrograms, which meets the standards set by the World Health Organization, making the exhaust gas clean and tasteless. The personnel provide highly purified, clean, odorless, safe and reliable compressed breathing air.

Product composition and characteristics

Standardized assembly-mass production
 

The machine is equipped with an automatic shutdown device, the shutdown pressure can be set freely, and it is equipped with a time running timer to support the maintenance time;
2 gas cylinders can be filled at the same time; (1 bottle is recommended, the charging speed is faster)
High-power all-copper core wire customized motor, stable power output, light starting load;
The protective cover adopts plastic spraying process, which is not easy to scratch and rust; (some manufacturers use spray paint, which is low cost and easy to fall off and rust)
Super strong triangle belt, strong tension, and wear-resisting and high-temperature resistance;
Shockproof pressure gauge 0~5800psi/400bar, accurate pressure value;
The reinforced steel plate base is equipped with anti-vibration pads, so the equipment runs more smoothly;
High-strength nylon cooling fan, better heat dissipation effect;
The low pressure adopts red copper tube, which has better heat dissipation performance, and the high pressure adopts stainless steel tube to ensure the safety of output pressure;
The rotating parts are equipped with protective cover devices, and safety valves and automatic shutdown systems are installed at all levels to ensure the safety of operators; motor drive or gasoline engine drive can be selected to meet the air supply requirements under various conditions;
Configure precision air filter (customized wire mesh filter element);

2-stage oil-water separator (standard with manual blowdown, optional automatic blowdown) Final classification air purification system 
The last stage adopts the piston ring process, and only the piston ring needs to be replaced if worn;  
The end uses a pressure maintenance valve, deep air filtration, and prolongs the life of the filter element, and uses an alloy aluminum permanent filter element, replaceable filter element material, saving later use costs;
The parts in contact with gas, such as cylinders and filter cartridges, are cleaned with alcohol before leaving the factory, and tested with food-grade lubricating oil, and they are all debugged before leaving the factory.

Main   application
                                        Diving cylinder filling                                                                  Fire gas cylinder filling

Fire-fighting breathing application: equipped in the gas supply stations of the fire brigade or various fire-fighting vehicles to provide emergency gas supply at the scene of a fire or in the rescue and relief process, so that the majority of firefighting officers will be exposed to heavy smoke, poisonous gas, steam or hypoxia. In this environment, you can breathe high-purity, clean, odorless, safe and reliable compressed air, thus ensuring that fire extinguishers can safely and effectively carry out fire fighting, rescue, disaster relief, and rescue.

Diving breathing applications: diving clubs, diving enthusiasts, marine aquaculture, marine rescue, ship equipment, underground operations, fishery fishing, aquaculture, sunken object salvage, underwater engineering, water parks, shipbuilding and other industries, providing high Purify, clean, odorless, safe and reliable compressed breathing air. In an environment that cannot meet the requirements of the human body for normal breathing, fill the air into a high-pressure cylinder for human breathing.
 

After-sales Service: Start up Spares Free
Warranty: 12 Months
Lubrication Style: Oil-less
Cooling System: Air Cooling
Cylinder Arrangement: Series Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Standard Hot Sales High Safety 330bar Breathing Filling Air Booster Compressor   supplier China Standard Hot Sales High Safety 330bar Breathing Filling Air Booster Compressor   supplier
editor by CX 2023-12-05

China best 10-400m3/Hr High Pressure Piston Oxygen Booster Compressor 5-20MPa Adjustable Air and Water Cooling with Good quality

Product Description

Oxygen supercharger is a kind of mechanical equipment. The working pressure range is large, and different types of supercharger can be used to obtain different pressure areas, and the input pressure and output pressure can be adjusted accordingly. It can reach extremely high pressure, gas 90MPa.

Oxygen booster

Oxygen booster

(1) The working pressure range is large, and different types of supercharger can be used to obtain different pressure areas.

Adjust the input pressure and the output pressure accordingly. It can reach extremely high pressure, gas 90MPa

(2) the flow range is wide, for all types of pump only 0.1kg air pressure can work smoothly, at this time to obtain the minimum flow, adjust

Different flow rates can be obtained after air intake.

(3) easy to control, from simple manual control to complete automatic control can meet the requirements.

(4) Automatic restart. No matter what causes the pressure drop in the pressure retaining loop, it will automatically restart to supplement the leakage pressure

Force, keep the loop pressure constant.

(5) Safe operation, gas driven, no arc and spark, can be used in dangerous occasions.

(6) The maximum energy saving can be up to 70%, because maintaining pressure does not consume any energy.
OIL FREE OILLESS HIGH PRESSURE RECIPROCATING COMPRESSOR ,
ADVANTAGE:
1.TOTALLY 100% OIL FREE,NO NEED OIL
2.SUITABLE FOR OXYGEN,HYDROGEN,NITROGEN,HELIUM,ARGON,CNG AND SPECIAL GAS
3.NO POLLUTION ,KEEP SAME PURITY TO INLET GAS 
4.RELIABLE AND TOP QUALITY
5.TOP COST PERFORMANCE,LOW MAINTENANCE COST AND EASY TO BE OPERATIONAL, ONLY NEED TO BE CHANGE PISTON RING
6.4000 HOURS PISTON RING WORKING LIFE,1500-200O HOURS WORKING LIFE FOR FINAL STAGE RING
7.TOP BRAND MOTOR,AND CAN BE SPECIAL POINTED ,LIKE SIMENSE BRAND 
8.SUPPLY JAPAN MARKET,QUALITY APPROVAL BY JAPAN STRICKLY SYSTEM
9.CE APPROVAL

Advantage
Oil-Free
Our Oxygen Compressor/Booster is completely oil-free and does not use any lubricating oil. The cylinder is made of stainless steel with oil-free design. The guide ring, piston ring and piston rod packing are all made of self-lubricating material, with 100% oil-free lubrication. All this assures that oxygen is clean and pollution-free. High temperature resistant grease lubrication is adopted for bearing parts, which will not contact with compression medium, avoid gas pollution during compression process, to ensure gas purity. It was controlled by the microcomputer controller, it has the functions of high exhaust temperature, low intake pressure and high exhaust pressure with alarm shutdown, high automation level, and more reliable operation.
Working Speed 
Our Oxygen Compressor/Booster’s working speed is very slow, usually 200-400rpm, which is suitable for 24 hours of continuous working conditions.
Selection
We can configure data remote display and remote control according to customer’s requirement.
Our Oxygen Compressor/Booster can be used in hospital oxygen centers to increase the pressure of oxygen lines in rooms, and to boost oxygen and fill cylinders. It can also be used for industrial acetylene combustion cutting, waste steel cutting in steel works, supporting boiler oxygen combustion, and circulating the steam oxygen in low
temperature liquid oxygen tank to the tank for various working conditions.
Pressure Range
Oil-free low pressure Oxygen Compressor/Booster, could be used in industrial boiler combustion support, hospital centralized oxygen supply booster, and other fields. The pressure ranging is from 0.2~3bar to 10bar-15barg.

 
Application
Oil-free high pressure Oxygen Compressor/Booster, could be used for high pressure oxygen bottle filling, so as to facilitate the oxygen storage and transport. According to the customers’ demand, the filling pressure is divided into 15mpa, 20mpa, and up to 30mpa. The filling is flow from 1Nm3/h to 300Nm3/h, especially suitable for the filling of PSA oxygen generator. It has characteristics of clean, totally oil-free, simple operation, reliable quality, low speed, and low noise. The Compressor/Booster could be working in continuous working conditions for a long time, which is the best choice of oxygen compressor.
 
Cooling Way
Oxygen Compressor/Booster, according to the cooling way, can be divided into air cooled and water cooled, customers can choose from it according to the actual local situation.

After-sales Service: 24hours
Warranty: 1year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China best 10-400m3/Hr High Pressure Piston Oxygen Booster Compressor 5-20MPa Adjustable Air and Water Cooling   with Good qualityChina best 10-400m3/Hr High Pressure Piston Oxygen Booster Compressor 5-20MPa Adjustable Air and Water Cooling   with Good quality
editor by CX 2023-12-02

China high quality CHINAMFG Booster 30bar High Pressure Air Piston Compressor Reciprocating Compressor CHINAMFG Piston Air Compressor with Great quality

Product Description

Piston air compressor

A piston type air compressor is a type of reciprocating air compressor, whose compression component is a piston, which reciprocates inside the cylinder and moves with the same gas as the piston. Derivative products include air compressors, assembly line equipment, plastic machines, fans,etc.
 
Basic composition of piston air compressor:

1. Exhaust valve  2. Cylinder  3. Piston  4. Piston rod  5. Slider  6. Connecting rod  7. Crane 8. Suction valve  9. Valve spring

 operational principle

    When the reciprocating piston in the cylinder moves to the right, the pressure in the left chamber of the piston in the cylinder is lower than atmospheric pressure pa, the suction valve opens, and external air is sucked into the cylinder. This process is called compression. When the pressure in the cylinder is higher than the pressure p in the output air pipeline, the exhaust valve opens. The process of compressed air being sent into the gas pipeline is called the exhaust process. The reciprocating motion of the piston is formed by a crank slider mechanism driven by an electric motor. The rotational motion of the crank is converted into sliding – the reciprocating motion of the piston.

34SH(Vertical double machine) Series:
Air discharge  :1.3-6.4Nm3/min
Discharge pressure:3.0Mpa
installed capacity:20HP×2(15KW ×2)~25HP×2 (118.5KW×2)

Series Model Air discharge (Nm3/min) Discharge pressure(Mpa) Motor Power(kw) Weight
(kg)
Size
length×width×height(mm)
34SH 34SH-1530T 1.3 3.0
 
15 550 1130*875*1388

2300*1003*1560

2-34SH-1530T
 
2.6 3.0 15*2 1120

Packaging & Shipping

Certifications

Company Profile

                                                                 FAQ

Q1: How many coutries you already exported?
A: Exported to more than 50 countries mainly from America,Russia,Brazil,Bangladesh,Egypt,Kuwait,Turkey,Jordan,Dubai,Iran,Peru,India,Malaysia,Vietnam,Indonesia,Singapore etc.

Q2: Is it OK to print my logo on products ?
A: Yes , OEM and ODM are available for us.

Q3: How could you guarantee your products ?
A: Each piece of products is manufactured by certified workshops, inspected by piece according to national QA/QC standard. We also could issue the warranty to customer to guarantee the quality.

Q4: Can we visit your factory before order?
A: Sure, we warmly welcome you to visit our factory at any time. The more you know us, the more you trust us! So you can rest assured on our quality products and our best services.

Q5: Will you delivery the goods on time?
A: Yes,we promise to deliver on time,indemnity clause in contact.

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Oil-less
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China high quality CHINAMFG Booster 30bar High Pressure Air Piston Compressor Reciprocating Compressor CHINAMFG Piston Air Compressor   with Great qualityChina high quality CHINAMFG Booster 30bar High Pressure Air Piston Compressor Reciprocating Compressor CHINAMFG Piston Air Compressor   with Great quality
editor by CX 2023-10-31